SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Bico, J. and Quere, D. (2002) Rise of Liquids and Bubbles in Angular Capillary Tubes. Journal of Colloid and Interface Science, 247, 162-166.
https://doi.org/10.1006/jcis.2001.8106

has been cited by the following article:

  • TITLE: A Generic Polycarbonate Based Microfluidic Tool to Study Crystal Nucleation in Microdroplets

    AUTHORS: Daniel Selzer, Burkard Spiegel, Matthias Kind

    KEYWORDS: Microfluidics, Polycarbonate, Crystallization, Electrolyte Solution, Organic Melt

    JOURNAL NAME: Journal of Crystallization Process and Technology, Vol.8 No.1, December 4, 2017

    ABSTRACT: Crystal nucleation is important to control the product properties in industrial crystallization processes. To investigate crystallization phenomena, methods which rely on microscopic volumes have gained relevance over the last decade. Microfluidic devices are suitable for carrying out crystallization experiments based on a large set of individual droplets in the nanoliter range. In this work, we propose a simple method to manufacture such devices from polycarbonate as an alternative to conventional chips made of poly (dimethylsiloxane). The microfluidic device consists of two main functional parts: A T-junction for droplet generation and a section for storage and observation of up to 400 individual droplets. Using these manufactured devices, it is easy to produce and store highly monodisperse droplets of substances that require either a hydrophilic or hydrophobic surface of the microchannel. Since crystal nucleation is a stochastic process which depends on the sample volume, a reproducible droplet volume is of great importance for crystallization experiments. The versatile applicability of the manufactured devices is demonstrated for substances which are used in different crystallization applications, for example, solution crystallization (aqueous potassium nitrate solution) and melt crystallization (ethylene glycol distearate). Finally, we demonstrate that the manufactured microfluidic devices in our experimental setup can be used to conduct crystal nucleation measurements. Based on these measurements we discuss our results with respect to state-of-the-art nucleation models.