SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Chen, J., Ban, Y. and Li, S. (2014) China: Open Access to Earth Land-Cover Map. Nature, 514, 434.

has been cited by the following article:

  • TITLE: Development of Global Cropland Agreement Level Analysis by Integrating Pixel Similarity of Recent Global Land Cover Datasets

    AUTHORS: Anjar Dimara Sakti, Wataru Takeuchi, Ketut Wikantika

    KEYWORDS: Global Land Cover, Pixel Comparison, Cropland Agreement Level

    JOURNAL NAME: Journal of Environmental Protection, Vol.8 No.12, November 24, 2017

    ABSTRACT: Global cropland monitoring is important when considering tactical strategies for achieving food sustainability. Different global land cover (GLC) datasets providing cropland information have already been published and they are used in many applications. The different data input methods, classification techniques, class definitions and production years among the different GLC datasets make them all independently useful sources of information. This study attempted to produce a cropland agreement level (CAL) analysis based on the integration of several cropland datasets to more accurately estimate cropland area distribution. Estimating cropland area and how it has changed on a national level was done by converting the level of cropland agreement into percentages with an existing cropland fraction map. A pre-analysis showed that the four GLC datasets used in the 2005 and 2010 groups had similar year input data acquisitions. Therefore, we placed these four datasets (GlobCover, MODIS LC, GLCNMO and ESACCI LC) into 2005 and 2010 year-groups and selected them to process dataset integration through a CRISP approach. The results of this process proposed four agreement levels for this CAL analysis, and the model correlation was converted into percentage values. The cropland estimate results from the CAL analysis were observed along with FAO data statistics and showed the highest accuracy, with a 0.70 and 0.71 regression value for 2005 and 2010 respectively. In the cropland area change analysis, this CAL change analysis had the highest level of accuracy when describing the total size of cropland area change from 2005 and 2010 when compared to other individual original GLC datasets.