SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Wang, H., Alfredsson, V., Tropsch, J., Ettl, R. and Nylander, T. (2013) Formation of CaCO3 Deposits on Hard Surfaces: Effect of Bulk Solution Conditions and Surface Properties. ACS Applied Material Interfaces, 5, 4035.

has been cited by the following article:

  • TITLE: Effect of High Temperatures on the Microstructure of Cement Paste

    AUTHORS: M. A. Tantawy

    KEYWORDS: Cement paste, C-S-H, Portlandite, Dehydration, Microstructure

    JOURNAL NAME: Journal of Materials Science and Chemical Engineering, Vol.5 No.11, November 17, 2017

    ABSTRACT: The microstructural and compositional changes within the cement paste exposed to high temperatures were monitored by XRD, FTIR, TGA/DTA and SEM techniques to understand the nature of decomposition of C-S-H gel and the associated physicomechanical properties of thermally damaged cement paste. OPC paste (w/c ratio 0.27) was hydrated for 28 days then fired up to 750°C for 2 hours (heating rate 10°C/min). The relative mass percent of calcium hydrates and portlandite was estimated by calculations derived from TGA results. Beyond 450°C, the percentage of portlandite sharply diminishes and C-S-H progressively decomposes into C2S and C3S until complete loss of calcium hydrates content occurs at 750°C. An increase of the total porosity, severe loss in mechanical strength and propagation of harmful cracks occurs. The thermal shock as a result of cooling of the heated cement paste and the rehydration of lime enhance the propagation of harmful cracks.