SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


IE-CDMX (2016) Inventario de Emisiones de la CDMX 2014. Contaminantes Criterio, Tóxicos y de Efecto Invernadero. Secretaría del Medio Ambiente del Gobierno de la Ciudad de México. [Emission Inventory of Mexico City 2014. Criteria, Toxic, and Greenhouse Effect Pollutants.] (in Spanish)

has been cited by the following article:

  • TITLE: Air Pollutant Emissions in the Fukui-Ishibashi and Nagel-Schreckenberg Traffic Cellular Automata

    AUTHORS: Alejandro Salcido, Susana Carreón-Sierra

    KEYWORDS: Cellular Automata, Mobile Source Emissions, Traffic Emission Rates, Traffic Models, Fukui-Ishibashi, Nagel-Schreckenberg

    JOURNAL NAME: Journal of Applied Mathematics and Physics, Vol.5 No.11, November 10, 2017

    ABSTRACT: Vehicular traffic is a hard problem in big cities. Internal combustion vehicles are the main fossil fuel consumers and frame the main source of urban air pollutants, such as particulate matter, nitrogen oxides, and volatile organic compounds. Vehicular traffic is also a promoter of climate change due to its greenhouse gas emissions, such as CO and CO2. Awareness of the spatiotemporal distribution of urban traffic, including the velocity distribution, allows knowing the spatiotemporal distribution of the air pollutant vehicular emissions required to understand urban air pollution. Although no well-established traffic theory exists, some models and approaches, like cellular automata, have been proposed to study the main aspects of this phenomenon. In this paper, a simple approach for estimating the space-time distribution of the air pollutant emission rates in traffic cellular automata is proposed. It is discussed with the Fukui-Ishibashi (FI) and Nagel-Schreckenberg (NS) models for traffic flow of identical vehicles in a single lane. We obtained the steady-state emission rates of the FI and NS models, being larger those produced by the first one, with relative differences of up to 45% in hydrocarbons, 56% in carbon monoxide, and 77% in nitrogen oxides.