SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Muhid, P. and Burford, M.A. (2012) Assessing Nutrient Limitation in a Subtropical Reservoir. Inland Waters, 2, 185-192.
https://doi.org/10.5268/IW-2.4.468

has been cited by the following article:

  • TITLE: The Impact of Nitrogen and Phosphorus Dynamics on the Kinneret Phytoplankton: II: Chlorophyta, Cyanophyta, Diatoms and Peridinium

    AUTHORS: Moshe Gophen

    KEYWORDS: Chlorophyta, Diatoms, Cyanobacteria, Nitrogen, Phosphorus, Kinneret

    JOURNAL NAME: Open Journal of Modern Hydrology, Vol.7 No.4, October 26, 2017

    ABSTRACT: Lake Kinneret long-term data of the epilimnetic concentrations (ppm) and loads (tones) of the total Nitrogen (TN), total Phosphorus (TP), total inorganic Nitrogen (TIN), total Dissolved Phosphorus (TDP), Phytoplankton groups’ biomass, water level (WL) and Jordan River Discharge were analyzed. Previously collected data compiled aimed at an insight into the causative background for the modification of Phytoplankton community change. The study was carried out by searching for relations between algal groups’ densities and nutrient conditions in the Epilimnion by the use of statistical methods (Simple and Fractional Polynomial Regressions). The study is aimed at analyzing the relations between algal biomass and nutrient contents. It was found that Nitrogen decline and slight increase of phosphorus were followed by Peridinium (Photo 1)decline and biomass increase of non-peridinium algae. It is suggested that nitrogen supply for algal growth is mostly from external sources, and the reduction of nitrogen in the epilimnion was caused by external removal. Contrary to nitrogen, phosphorus sourcing is only partly external (dust deposition, drainage basin) and mostly internal through double channels: Microbial mineralization of bottom sediments and Peridinium cysts mediation. The resulted complexity of the Kinneret ecosystem structure is nitrogen limitation, and enhancement of Non-peridinium algal growth, mostly Cyanobacteria.