SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Venegas, G.M.R. (2016) Maize Production and Marketing in Mexico. 21 Meeting on Regional Development in Mexico.

has been cited by the following article:

  • TITLE: Proximate Composition, Fatty Acid Profile and Mycotoxin Contamination in Several Varieties of Mexican Maize

    AUTHORS: Silvia Denise Peña Betancourt, Rey Gutiérrez Tolentino, Beatriz Schettino

    KEYWORDS: Zea mays L., Fatty Acid Profile, Fumonisins, Aflatoxins, Mexican Corn

    JOURNAL NAME: Food and Nutrition Sciences, Vol.8 No.9, September 21, 2017

    ABSTRACT: In Mexico maize (Zea mays L.) is an important cereal due to excellent taste and nutritional value. Nutritional content and fatty acid profile has been reported in white maize, however, there are several genotypes natives (red, yellow, black, blue, pinto), and many improved hybrids maize of which little is known. Fumonisins and aflatoxins are mycotoxins present in 25% of the world’s cereals, mainly in tropical and subtropical regions around the world. This study presents the analysis of proximate composition (ash, protein, lipids), as well as mycotoxins (fumonisins and aflatoxins) and five different fatty acids, two of saturated fatty acids (palmitic and stearic) and three of polyunsaturated fatty acids (oleic, linoleic and linolenic), evaluated by Gas Chromatography and Flame Detector (GC-DF). Thirty varieties of maize (native and hybrid maize) were collected in states of central region. The total fumonisins were determined using the QuickTox TM extraction and quantificated by QuickScan fumonisins; the aflatoxins were analyzed by commercial ELISA kit. The highest protein level was 10.43 g/100g, 5.63 g/100g for fat, 1.62 g/100g for ash in hybrid maize. In native maize, the highest levels of protein and ash were 10.94 g/100g and 1.45 g/100g for pinto maize. The higher value for fat was 5.45 g/100g in yellow maize. The palmitic and stearic acids, in native maize were higher that hybrid maize, for linoleic acid and linoleinic fatty with a significant difference between native corn. Fumonisins and aflatoxins were contaminated in all genotypes of maize, in allow levels. This information obtained may be considered in maize breeding programs, industrialization processes and healthy diets.