SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Chentsov, A.G. (2011) On One Example of Representing the Ultrafilter Space for an Algebra of Sets. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 17, 4.

has been cited by the following article:

  • TITLE: Constraints of Asymptotic Character and Attainability Problems

    AUTHORS: Alexander G. Chentsov

    KEYWORDS: Attraction Set, Topological Space, Ultrafilter

    JOURNAL NAME: Intelligent Information Management, Vol.9 No.5, September 19, 2017

    ABSTRACT: The attainability problem with “asymptotic constraints” is considered. Concrete variants of this problem arise in control theory. Namely, we can consider the problem about construction and investigation of attainability domain under perturbation of traditional constraints (boundary and immediate conditions; phase constraints). The natural asymptotic analog of the usual attainability domain is attraction set, for representation of which, the Warga generalized controls can be applied. More exactly, for this, attainability domain in the class of generalized controls is constructed. This approach is similar to methods for optimal control theory (we keep in mind approximate and generalized controls of J. Warga). But, in the case of attainability problem, essential difficulties arise. Namely, here it should be constructed whole set of limits corresponding to different variants of all more precise realization of usual solutions in the sense of constraints validity. Moreover, typically, the above-mentioned control problems are infinite-dimensional. Real possibility for investigation of the arising limit sets is connected with extension of control space. For control problems with geometric constraints on the choice of programmed controls, procedure of this extensions was realized (for extremal problems) by J. Warga. More complicated situation arises in theory of impulse control. It is useful to note that, for investigation of the problem about constraints validity, it is natural to apply asymptotic approach realized in part of perturbation of standard constraints. And what is more, we can essentially generalize self notion of constraints: namely, we can consider arbitrary systems of conditions defined in terms of nonempty families of sets in the space of usual controls. Thus, constraints of asymptotic character arise.