SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Cicerone, R.J. and Shetter, J.D. (1981) Sources of Atmospheric Methane: Measurements in Rice Paddies and a Discussion. Journal of Geophysical Research, 86, 7203-7209.

has been cited by the following article:

  • TITLE: Diurnal Methane Fluxes as Affected by Cultivar from Direct-Seeded, Delayed-Flood Rice Production

    AUTHORS: Kristofor R. Brye, Alden D. Smartt, Richard J. Norman

    KEYWORDS: Methane Flux, Methane Emissions, Rice, Arkansas, Hybrid, Pure-Line, Silt Loam, Clay

    JOURNAL NAME: Journal of Environmental Protection, Vol.8 No.9, August 17, 2017

    ABSTRACT: Methane (CH4) emissions are known to differ between rice (Oryza sativa L.) cultivars, where CH4 emissions from pure-line cultivars are often greater than from hybrids. Numerous field studies have shown that CH4 emissions follow a diurnal pattern, typically reaching their maximum during afternoon hours. However, it is unknown whether cultivar affects CH4 fluxes/emissions at various measurement times of day or how those cultivar effects may differ spatially across soil textures and temporally throughout the rice growing season. The objective of this field study was to evaluate the effects of time of day (300, 800, 1200, 1800, and 2300 hours) and cultivar (one hybrid and one pure-line) on CH4 fluxes before and after heading from a silt-loam and clay soil in a direct-seeded, delayed-flood rice production system. Enclosed headspace chambers, 30 cm in diameter, were used for CH4 gas sampling on 22 July and 19 August at a silt-loam site and on 29 July and 26 August, 2014 at a clay-soil site in the Lower Mississippi River delta region of eastern Arkansas. Methane fluxes measured pre- and post-heading ranged from 0.7 to 2.2 mg CH4-C m-2· hr-1 from the clay soil and from 2 to 7 mg CH4-C m-2·hr-1 from the silt-loam soil. Hourly CH4 fluxes and estimated daily emissions differed among measurement times of day (P 4 flux or daily emissions for a given day differs by soil texture and rice growth stage, but conducting CH4 flux measurements around late morning to mid-day appear to be optimum to best capture the mean CH4 emissions for the day.