SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Liu, Y. and Xu, C. (2009) Three-Party Quantum Secret Sharing Based on Secret Direct Communication. International Forum on Information Technology and Applications, 1, 126-130.

has been cited by the following article:

  • TITLE: Quantum Secret Broadcast for Wireless Quantum Networks

    AUTHORS: Tao Shang, Gang Du, Jianwei Liu

    KEYWORDS: Quantum Secret Sharing, Quantum Secret Broadcast, Cluster Network

    JOURNAL NAME: International Journal of Communications, Network and System Sciences, Vol.10 No.8B, August 14, 2017

    ABSTRACT: In wireless quantum networks, nodes communicate by means of pre-distribution for entangled pairs and relay path establishment for quantum teleportation. However, simple point-to-point communication seriously restricts the efficiency of quantum communication. Inspired by sharing idea of quantum secret sharing (QSS), which is based on three collaborative nodes with pre-shared GHZ (Greenberger-Horne-Zeilinger) states, we propose a quantum secret broadcast scheme to improve network performance. In a cluster net-work cored on three parties of QSS, three cluster heads with pre-shared GHZ states are senders, while cluster members are receivers. One cluster head encodes secret messages on auxiliary particles by performing certain operations on them with GHZ particles, then three cluster heads measure their own par-ticles and broadcast measurement results honestly. Based on the specific correlation of measurement results and secret messages, all receivers can re-cover the secret messages. Furthermore, to prevent eavesdropping, cluster heads can update an encoding key periodically. Analysis shows the proposed scheme is more efficient than previous schemes in wireless quantum net-works, especially when the number of receivers is larger. Besides, in the proposed scheme, attacks on quantum channel based on GHZ state can be detected, and eavesdroppers cannot recover messages correctly for lack of suitable decoding key.