SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Shimkevich, I.Y. and Shimkevich, A.L. (2014) MD Simulated Microstructure of Liquid Sodium Alloyed with Lead. Materials Sciences and Applications, 5, 556-567.
https://doi.org/10.4236/msa.2014.58058

has been cited by the following article:

  • TITLE: First-Eutectic Features of Polar Metals in Double Systems

    AUTHORS: Alexander L. Shimkevich, Inessa Yu. Shimkevich

    KEYWORDS: Tetrahedral Cluster, Liquid-Metal Eutectic, Lead and Potassium, Sodium and Thallium, Polymorphic Transition

    JOURNAL NAME: Journal of Crystallization Process and Technology, Vol.7 No.3, July 6, 2017

    ABSTRACT: It is known that the dense part of any liquid metal consists of ramified clusters of almost regular tetrahedrons (triangular pyramids with atoms in their vertexes) that are connected into chains by faces. Any metal additive as a second component of liquid alloy can be both beyond these clusters as separated atoms and into them as inherent clusters. The liquid-metal alloy transfers into the second state, at the first eutectic of the solvent. This polymorphic transition of liquid matrix is discovered in the systems, Pb-K and Na-Pb, by molecular-dynamic simulating their microstructure and in experiments on scattering slow neutrons by these alloys of different compositions. In the first system, the obtained results identify both the homogeneous alloy at low concentrations of potassium in liquid lead and the alloy clustering, (Pb4K)n, at potassium concentrations following the eutectic, Pb0.91K0.09. In the second one at the concentrations of lead more than 2%, just the second state is discovered with the clusters, (Na4Pb)n. One can expect the same polymorphic transition in the eutectic, Na0.93Tl0.07, with the micro-inhomogeneity, (Na6Tl)n, and with the melting point of 64 C. This eutectic maintained by the oxygen-free technology and enriched by the isotope, 205Tl, can become the best coolant for fast nuclear reactors due to the depressed chemical activity of sodium and composition stability.