SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Kim, W., Park, T.I., Yoo, S.J., et al. (2013) Generation and Analysis of a Complete Mutant Set for the Arabidopsis FT/TFL1 Family Shows Specific Effects on Thermo-Sensitive Flowering Regulation. Journal of Experimental Botany, 64, 1715-1729.

has been cited by the following article:

  • TITLE: Cloning and Bioinformatics Analysis of Rosa rugosa TFL1 Gene (RrTFL1)

    AUTHORS: Dandan Zhao, Xiao Wei, Leilei Wang, Lanyong Zhao, Xiaoyan Yu

    KEYWORDS: Rosa rugosa, TFL1 Gene, Clone, Biological Analysis

    JOURNAL NAME: Advances in Bioscience and Biotechnology, Vol.8 No.6, June 27, 2017

    ABSTRACT: In order to determine if the TFL1 is related with the continuous flowering phenotype of wild Rosa rugosa from Muping, the full-length cDNA sequence of TFL1 Gene was cloned for the first time from the flower buds of wild Rosa rugosafrom Muping with RT-PCR and RACE methods and named as RrTFL1. The full-length cDNA is 973 bp with an open reading frame of 519 bp, encoding 172 amino acids. The derived protein has a molecular weight of 19.48 kD, a calculated pI of 9.13, a c100227 conserved domain at position 1-172, and belongs to PEBP family. The derived protein is a Hydrophilic protein secreted into the cytoplasmic. There is no transmembrane domain and no signal peptide cleavage site, five Ser phosphorylation sites, seven Thr phosphorylation sites, three Tyr phosphorylation sites, one O-glycosylation site, and no N-glycosylation sites. There are 24.42% α-helixes, 36.63% random coil, 27.91% extended peptide chain, and 11.05% β-corner structure. This protein and the TFL1 protein from Rosaceae plants, including Rosa chinensis, share a sequence homology of 87% - 96%. All of the proteins contain a c100227 conserved domain, two highly conserved modules D-P-D-x-P, G-x-H-R, and two functional sites His, Asp. Furthermore, their phylogenetic relationships are consistent with their traditional classifications. These results not only laid a foundation for further researching the expression and function of RrTFL1, but also cultivating new varieties of R. rugosawhich can flower continuously by gene engineering.