SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Yadav, S.K. and Kadilar, C. (2013) Efficient Family of Exponential Estimator for Population Mean. Hacettepe Journal of Mathematics and Statistics, 42, 671-677.

has been cited by the following article:

  • TITLE: New Efficient Estimators of Population Mean Using Non-Traditional Measures of Dispersion

    AUTHORS: Rajesh Kumar Gupta, Subhash Kumar Yadav

    KEYWORDS: Study Variable, Auxiliary Variable, Bias, Mean Squared Error, Efficiency

    JOURNAL NAME: Open Journal of Statistics, Vol.7 No.3, June 5, 2017

    ABSTRACT: One of the aims in survey sampling is to search for the estimators with highest efficiency. In the present paper, three improved estimators of population mean have been proposed using some non-traditional measures of dispersion of auxiliary variable such as Gini’s mean difference, Downton’s method and probability weighted moments early given by Abid [1] with a special population parameter of auxiliary variable. The large sample properties that are biased and mean squared errors of the proposed estimators have been derived up to the first order of approximation. A theoretical comparison of the proposed estimators has been made with the other existing estimators of population mean using auxiliary information. The conditions under which the proposed estimators perform better than the other existing estimators of population mean have been given. A numerical study is also carried out to see the performances of the proposed and existing estimators of population mean and verify the conditions under which proposed estimators are better than other estimators. It has been shown that the proposed estimators perform better than the existing estimators as they are having lesser mean squared error.