SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Alsoufi, M.S. and Bawazeer, T.M. (2015) Quantifying Assessment of Touch-Feel Perception: An Investigation Using Stylus Base Equipment and Self-Touch (Human Fingertip). Journal of Engineering and Architecture, 1, 1-16.

has been cited by the following article:

  • TITLE: Abrasive WaterJet Machining of Thick Carrara Marble: Cutting Performance vs. Profile, Lagging and WaterJet Angle Assessments

    AUTHORS: Mohammad S. Alsoufi, Dhia K. Suker, Mohammed W. Alhazmi, Sufyan Azam

    KEYWORDS: Skewness, Kurtosis, Lagging, Waterjet Angle, Abrasive WaterJet, Carrara Marble

    JOURNAL NAME: Materials Sciences and Applications, Vol.8 No.5, May 25, 2017

    ABSTRACT: This paper deals with an assessment of the machined surface created by abrasive waterjet technology regarding its cutting performance versus profile, lagging and waterjet angle assessments. The results of the experiments presented in this study are with regard to Carrara marble. The machined surfaces were measured in seven different locations across a 40 mm depth of cut by a high precision contact-type profilometer and thus assessed using the standardized amplitude parameters of the profile distribution. The lagging and waterjet angle were also evaluated by creating a digital photo of the machined surface together with a reference gauge. The existence of machining marks on the machined surface has been mostly noticeable in the bottom zone around ~20 mm depth of cut down to jet exit. This investigation leads to a conclusion that, stand-off distance and traverse rate play the roles of the utmost importance in considerations of the machined surface quality in contrast to abrasive mass flow rate. In addition, while the striation zone (rough surface) cannot be eliminated entirely, by selecting proper process parameters, a smooth cutting machined surface can be accomplished.