SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Camacho, D.H. and Guan, Z. (2010) Designing Late-Transition Metal Catalysts for Olefin Insertion Polymerization and Copolymerization. Chemical Communications, 46, 7879-7893.

has been cited by the following article:

  • TITLE: Simple Preparation of Halogen-Substituted α-Diimine Nickel Complexes Immobilized into Clay Interlayer as Catalysts for Ethylene Oligo-/Polymerization

    AUTHORS: Miru Yoshida-Hirahara, Shiori Fujiwara, Hideki Kurokawa

    KEYWORDS: Ethylene Oligo-/Polymerization, Heterogeneous Catalyst, Halogen Substituted α-Diimine Nickel Complex, α-Olefin Oligomer, Layered Clay Mineral

    JOURNAL NAME: Modern Research in Catalysis, Vol.6 No.2, April 30, 2017

    ABSTRACT: In the practical use for the production of the α-olefins, it is highly desired to develop a novel heterogeneous catalyst system. The metal complexes immobilized into the clay interlayers show a great potential as heterogeneous catalysts due to their excellent processability. In this study, nine types of heterogeneous procatalyst Ln/Ni2+-micas were synthesized via a one-pot preparation method, which includes both the condensation reaction of the ligand derivatives and the intercalation of the ligands into the Ni2+ ion-exchanged fluorotetrasilicic mica interlayer. The ligand structures of the prepared procatalysts were [Ln: R-N = C(Nap)-C(Nap) = N-R] [(Nap = 1,8-naphthdiyl) (L1, R = 2-MePh; L2, R = 2-FPh; L3, R = 2-BrPh; L4, R = 4-MePh; L5, R = 4-FPh; L6, R = 4-BrPh; L7, R = 2,4-F2Ph; L8, R = 2,4-Br2Ph; L9, R = 2,6-F2Ph). At 50℃ and 0.7 MPaethylene pressure, the triisobutylaluminum-activated L1-L6/Ni2+-mica showed a catalytic activity for the ethylene oligo-/polymerization in the range of 334 - 549 g-ethylene•g-cat–1•h–1. A high catalyst activity was obtained when the substituent having a larger steric bulk than that of a methyl substituent was introduced at the ortho-position of the aryl rings. The introduction of the fluorine substituent as a strong electron-withdrawing group to the para-position also increased the catalytic activity. The L2, L4, L5, and L6/Ni2+-micas showed moderate selectivities to oligomers consisting of C4-C20 in the range of 19.9 - 41.6 wt% at 50℃. The calculated Schulz-Flory constants α based on the mole fraction of C12 and C14 were within 0.61 - 0.78.