SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Noerdinger, P.D. (2008) Solar Mass Loss, the Astronomical Unit and the Scale of the Solar System.
https://arxiv.org/ftp/arxiv/papers/0801/0801.3807.pdf

has been cited by the following article:

  • TITLE: Rethinking the Earth in the Solar System

    AUTHORS: Gianni Donati

    KEYWORDS: Solar System, Sun and Earth Evolution, Gravity, Neutrinos, Relativity

    JOURNAL NAME: Journal of Applied Mathematics and Physics, Vol.5 No.3, March 23, 2017

    ABSTRACT: The recent discovery that the Earth is retarding each year by a fraction of a second its revolution around the Sun led to investigations and speculations about the cause of such a defect in what was thought to be a perfect clock. The emission of thermal radiation by the Sun cannot justify this discrepancy even if a fraction of unknown dark matter is added to increase the Sun mass loss. The increase of distance of Earth/Moon center of mass from the Sun is estimated of the order of one centimeter per year. However experimental measurements suggest values of the order from 5 to 15 centimeters, hard to be measured for the distances involved. To solve this problem, sophisticated orbital analysis has been proposed, changes in the gravitational constant G have been suggested and more precise mass/distance measurements in the solar system, asteroids included, have been requested. The present paper shows how the use of an elementary model for the Earth/Moon orbit together with a new theory for the gravitational constant G, coherent with Newton law, can solve this problem. The comprehension of gravity, the ultimate unexplained force of the universe, is the key to solve this and the many remaining question marks in the books of physics.