SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Sun, D., Zhang, Z., Wang, M. and Wu, Y. (2013) Adsorption of Reactive Dyes on Activated Carbon Developed from Enteromorphaproriera. American Journal of Analytical Chemistry, 4, 17-26.
https://doi.org/10.4236/ajac.2013.47A003

has been cited by the following article:

  • TITLE: Adsorption of Malachite Green from Aqueous Solutions onto Rice Husks: Kinetic and Equilibrium Studies

    AUTHORS: V. M. Muinde, J. M. Onyari, B. Wamalwa, J. Wabomba, R. M. Nthumbi

    KEYWORDS: Adsorption, Malachite Green, Rice Husks, Isotherm, Cationic Dye

    JOURNAL NAME: Journal of Environmental Protection, Vol.8 No.3, March 10, 2017

    ABSTRACT: A study was done to evaluate the removal of a cationic dye from simulated waste water onto rice husks (RH). Spectroscopic methods such as FTIR and SEM/EDX were used for adsorbent characterization. Experimental dependency on solution pH, initial dye concentration, agitation speed, adsorbentparticle size, temperature of the solution and contact time was evaluated. The adsorption data was tested using both Langmuir and Freundlich isotherms. The data fitted well into Langmuir isotherm model with a monolayer adsorption capacity of 6.5 mg/g. Further, the separation factor (RL) value was less than unity indicating a favorable adsorption process. Adsorption kinetics was determined using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. The results showed that the adsorption of malachite green onto rice husks followed pseudo-second-order model with a determination coefficient of 0.986. This work has revealed that rice husks have a great potential to sequester cationic dyes from aqueous solutions and therefore it can be utilized to clean contaminated effluents.