SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Dague, E., Alsteens, D., Latgé, J.-P. and Dufrêne, Y.F. (2008) High-Resolution Cell Surface Dynamics of Germinating Aspergillus fumigatus Conidia. Biophysical Journal, 94, 656-660.
https://doi.org/10.1529/biophysj.107.116491

has been cited by the following article:

  • TITLE: Understanding the Assembly Mechanism of Proteins from Monte Carlo Simulations

    AUTHORS: Stéphane Cuenot, Agata Zykwinska, Sadia Radji, Jean-Philippe Bouchara

    KEYWORDS: Protein Assembly, Aspergillus fumigatu, Anisotropic Interactions, Monte Carlo Simulations

    JOURNAL NAME: Applied Mathematics, Vol.8 No.3, March 3, 2017

    ABSTRACT: Understanding the molecular mechanism of the protein assembly still remains a challenge in the case of many biological systems. In this frame, the mechanism which drives RodA hydrophobins to self-assemble onto the surface of the conidia of the human fungal pathogen Aspergillus fumigatus into highly ordered nanorods known as rodlets, is still unresolved. Here, AFM investigations were combined with Monte Carlo simulations to elucidate how these small amphiphilic proteins self-assemble into tightly packed rodlets and how they are further organized in nanodomains. It becomes that the assembly of RodA hydrophobins into rodlets and their parallel alignment within nanodomains result from their anisotropic properties. Monte Carlo simulations allowed us to confirm that anisotropic interactions between macromolecules are sufficient to drive them to assembly into rodlets prior to nanodomains formation. Better knowledge of the mechanism of hydrophobins assembly into rodlets offers new prospects for the development of novel strategies leading to inhibition of rodlet formation, which should allow more rapid detection of the conidia by the immune system.