SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Sittiwet, C., Gylling, H., Hallikainen, M., Pihlajamaki, J., Moilanen, L., Laaksonen, D.E., Niskanen, L., Agren, J.J., Laakso, M. and Miettinen, T.A. (2007) Cholesterol Metabolism and Non-Cholesterol Sterol Distribution in Lipoproteins of Type 1 Diabetes: The Effect of Improved Glycemic Control. Atherosclerosis, 194, 465-472.
https://doi.org/10.1016/j.atherosclerosis.2006.08.044

has been cited by the following article:

  • TITLE: Regulation of Intestinal Cholesterol Absorption: A Disease Perspective

    AUTHORS: Jahangir Iqbal, Ali Al Qarni, Abbas Hawwari

    KEYWORDS: Cholesterol Absorption, Atherosclerosis, Metabolic Disease, NPC1L1, ATP-Binding Cassette Transporters

    JOURNAL NAME: Advances in Biological Chemistry, Vol.7 No.1, February 24, 2017

    ABSTRACT: Hypercholesterolemia promotes atherosclerosis and precise regulation of cholesterol homeostasis is essential. Besides risk factor for cardiovascular disease, abnormalities in cholesterol metabolism have been associated with type 2 diabetes. Cholesterol homeostasis in the body is maintained by de novo synthesis. Furthermore, intestinal cholesterol absorption has recently been considered as an important control point in cholesterol homeostasis. Important insights have been gained into the mechanisms of transport of cholesterol from the intestinal lumen into the enterocytes. Several transporter proteins that appear to be key players in the control of the cholesterol absorption from the intestinal lumen have been identified. Here, we review intestinal cholesterol absorption and the mechanisms underlying alterations in cholesterol absorption under physiological conditions and in diseases such as diabetes mellitus.