SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Gajda, I., Greenman, J., Melhuish, C. and Ieropoulos, I. (2013) Photosynthetic Cathodes Formicrobial Fuel Cells. International Journal of Hydrogen Energy, 38, 11559-11564.
https://doi.org/10.1016/j.ijhydene.2013.02.111

has been cited by the following article:

  • TITLE: The Effect of Different Wavelength of Light for Microbial Fuel Cell with an Anode of Rhodopseudomonas faecalis (PSB-B)

    AUTHORS: Guang Rong, Qingping Hu

    KEYWORDS: Microbial Fuel Cell, Light, Photosynthetic Bacteria

    JOURNAL NAME: Open Access Library Journal, Vol.4 No.2, February 22, 2017

    ABSTRACT: A microbial fuel cell (MFC) with an algae-assisted cathode is a low-cost and sustainable way to provide the oxygen for the oxygen reduction reaction. The anode was with anaerobic microorganism, a kind of photosynthetic bacteria (PSB-B). An algae bioreactor was connected to cathode microbial fuel cells to increase power generation by supplying more oxygen to cathode electrode. In this study, we used red, blue and white LED light as the light source, and the anode and cathode were under irradiation respectively. The result showed that white LED light was an effective factor for the anode, the cell voltage was built up from 34 mv to 60 mv, power density increased up to 2.5 mW/m2, the red and blue light had positive impact on the voltage. At cathode, the voltage was almost on steady stage conditions, and it was fluctuated around 35 mv by oxygen bubbles that were produced by algae. This relatively simple method increased the oxygen reduction rate at a low cost and could be applied to improve the performance of MFC.