SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Nagabhushanam, D., Naresh, N., Raghunath, A. and Praveen Kumar, K. (2013) Prediction of Tuberculosis Using Data Mining Techniques on Indian Patient’s Data. IJCST, 4, 262-265.

has been cited by the following article:

  • TITLE: Evaluation of TB Patients Characteristics Based on Predictive Data Mining Approaches

    AUTHORS: Farzad Firuzi Jahantigh, Hakimeh Ameri

    KEYWORDS: TB Patients, Clustering, Decision Tree, Neural Network

    JOURNAL NAME: Journal of Tuberculosis Research, Vol.5 No.1, February 16, 2017

    ABSTRACT: According to the World Health Organization, Tb is the biggest cause of death among the infectious diseases. Due to the high percentage of people with tuberculosis infection and the high number of death among these patients, this study is a prospective study aimed to categorize and find the relationship between different clinical and demographic characteristics. The study was conducted on 600 patients from Masih-e-Daneshvari tuberculosis research center during 2015-2016. The K-Means clustering data mining algorithms and decision trees are used to perform the categorization and determine common indicators among patients. 2 clusters according to Dunn index were chosen as the optimal clusters. Common factors between clusters are provided in detail in the findings section. According to the results of this study, the most important factors identified by the clustering include hemoglobin, age, sex, smoking, alcohol consumption and creatinine. The RBF neural network tree has 98% accuracy. According to the results of this study, the most important factors identified are sex, smoking, alcohol consumption and WBC, albumin.