SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Xi, Y., et al. (2015) Induction of BCL2-Interacting Killer, BIK, Is Mediated for Anti-Cancer Activity of Curcumin in Human Head and Neck Squamous Cell Carcinoma Cells. Journal of Cancer, 6, 327-332.

has been cited by the following article:

  • TITLE: Anticancer Effects of Curcumin, Artemisinin, Genistein, and Resveratrol, and Vitamin C: Free Versus Liposomal Forms

    AUTHORS: Jerry T. Thornthwaite, Hare R. Shah, Spencer R. England, Lee H. Roland, Seth P. Thibado, Thomas K. Ballard, Brandon T. Goodman

    KEYWORDS: Curcumin, Artemisinin, Cancer, Micelle, Natural

    JOURNAL NAME: Advances in Biological Chemistry, Vol.7 No.1, February 15, 2017

    ABSTRACT: Cancer prevention supplements, which also provide effective treatment with minimal side effects, are urgently needed. An accurate, fast assay system is described that reveals the ability of chemically defined products, such as curcumin, genistein, resveratrol, artemisinin, and vitamin C, to kill K562 Erythroleukemic cells in vitro. In addition, curcumin and vitamin C were encapsulated into fatty acid micelles named NutraNanoSpheresTM (NNS) using all natural products. A unique viability stain, which allows the rapid staining of dead cells by membrane penetration using Propidium Iodide, was used to measure the cell viability by flow cytometry. Cell death by alteration of the cell membranes could be seen within 30 s of exposure to curcumin. The other free components required 0.5 - 70 h to see maximum killing, suggesting a more metabolic and/or apoptotic route of cancer cell destruction. Vitamin C up to 1 × 104 μmol/well did not affect K562 cell viability. The vitamin C-NNS (3.2 nm diameter-60 mg/50 μL) showed an LD50 = 133 μmol/well ± 11 SD (n = 4), which was over 75 times more potent than the free vitamin C. The curcumin-NNS (7.4 nm diameter-25 mg/50 μL) resulted in an LD50 = 41.3 μmol/well ± 5.6 SD (n = 8) and represented a 264 fold increase in activity to destroy the cancer cells. The clinical goal is to develop water-soluble mixtures of anti-cancer compounds in the NNS with their high bioavailability (>90%) and without degradation in the stomach for preventing and curing cancer.