SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Wu, Y.-C. and Ng, T.-S. (2000) New Implementation of a Gmsk Demodulator in Linear Software Radio Receiver. The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2, 1049-1053.

has been cited by the following article:

  • TITLE: FPGA Implementable Frame Synchronization Algorithm for Burst Mode GMSK

    AUTHORS: Onur Berkay Gamgam, Erdinc Levent Atilgan

    KEYWORDS: GMSK, Coherent Receiver, Signal Detection, Frame Synchronization

    JOURNAL NAME: Communications and Network, Vol.9 No.1, February 15, 2017

    ABSTRACT: In time division multiple access (TDMA) communication systems, correctly estimating the synchronization parameters is very important for reliable data transfer. The algorithms used for frequency/phase and symbol timing estimates are generally accepted as knowing the start of signal (SoS) parameter. Therefore, within these parameters, the SoS parameter is of particularly great importance. In this study, a reduced version of the SoS estimation algorithm introduced by Hosseini and Perrins is presented to estimate SoS for Gaussian Minimum Shift Keying (GMSK) modulated signals in burst format over additive white Gaussian noise (AWGN) channels. The reduced algorithm can be implemented on FPGA by using half the number of complex multipliers that would be required by the double correlation method and is robust to carrier frequency/phase errors. Simulations performed under 0.1 normalized frequency offset conditions show that the proposed algorithm has a probability of false lock which is less than 7×10-2, even at 0 dB SNR level.