SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Liu, L., Schaefer, K., Zhang, T. and Wahr, J. (2012) Estimating 1992-2000 Average Active Layer Thickness on the Alaskan North Slope from Remotely Sensed Surface Subsidence. Journal of Geophysical Research, 117, F01005.

has been cited by the following article:

  • TITLE: L-Band InSAR Penetration Depth Experiment, North Slope Alaska

    AUTHORS: Reginald R. Muskett

    KEYWORDS: Alaska, Tundra, SAR/InSAR, Aircraft, Spacecraft

    JOURNAL NAME: Journal of Geoscience and Environment Protection, Vol.5 No.3, February 15, 2017

    ABSTRACT: Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA’s SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising from permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.