SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Mayer, D.C. (1991) List of Discriminants of Totally Real Cubic Fields L, Arranged According to Their Multiplicities m and Conductors f. Computer Centre, Department of Computer Science, University of Manitoba, Winnipeg, Canada, Austrian Science Fund, Project Nr. J0497-PHY.

has been cited by the following article:

  • TITLE: Criteria for Three-Stage Towers of p-Class Fields

    AUTHORS: Daniel C. Mayer

    KEYWORDS: Hilbert p-Class Field Tower, p-Class Group, p-Principalization Types, Quadratic Fields, Unramified Cyclic Cubic Field Extensions, p-Class Tower Group, Relation Rank, Metabelianization, Coclass Graphs

    JOURNAL NAME: Advances in Pure Mathematics, Vol.7 No.2, February 7, 2017

    ABSTRACT: Let p be a prime and K be a number field with non-trivial p-class group ClpK. A crucial step in identifying the Galois group G∞p of the maximal unramified pro-p extension of K is to determine its two-stage approximation M=G2pk, that is the second derived quotient M≃G/Gn. The family τ1K of abelian type invariants of the p-class groups ClpL of all unramified cyclic extensions L/K of degree p is called the index- abelianization data (IPAD) of K. It is able to specify a finite batch of contestants for the second p-class group M of K. In this paper we introduce two different kinds of generalized IPADs for obtaining more sophisticated results. The multi-layered IPAD (τ1Kτ(2)K) includes data on unramified abelian extensions L/K of degree p2 and enables sharper bounds for the order of M in the case Clpk≃(p,p,p), where current im-plementations of the p-group generation algorithm fail to produce explicit contestants for M , due to memory limitations. The iterated IPAD of second order τ(2)K contains information on non-abelian unramified extensions L/K of degree p2, or even p3, and admits the identification of the p-class tower group G for various infinite series of quadratic fields K=Q(√d) with ClpK≃(p,p) possessing a p-class field tower of exact length lpK=3 as a striking novelty.