SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Saito, H., Chirwa, E.C., Inai, R. and Hamada, H. (2002) Energy Absorption of Braiding Pultrusion Process Composite Rods. Composite Structures, 55, 407-417.
https://doi.org/10.1016/S0263-8223(01)00160-X

has been cited by the following article:

  • TITLE: Progressive Crushing of Polymer Matrix Composite Tubular Structures: Review

    AUTHORS: Ali Rabiee, Hessam Ghasemnejad

    KEYWORDS: Crashworthiness, Fibre-Reinforced Polymer Composites (FRPs), Metal Tube

    JOURNAL NAME: Open Journal of Composite Materials, Vol.7 No.1, January 16, 2017

    ABSTRACT: The present paper reviews crushing process of fibre-reinforced polymer (FRPs) composites tubular structures. Working with anisotropic material requires consideration of specific parameter definition in order to tailor a well-engineered composite structure. These parameters include geometry design, strain rate sensitivity, material properties, laminate design, interlaminar fracture toughness and off-axis loading conditions which are reviewed in this paper to create a comprehensive data base for researchers, engineers and scientists in the field. Each of these parameters influences the structural integrity and progressive crushing behaviour. In this extensive review each of these parameters is introduced, explained and evaluated. Construction of a well-engineered composite structure and triggering mechanism to strain rate sensitivity and testing conditions followed by failure mechanisms are extensively reviewed. Furthermore, this paper has mainly focused on experimental analysis that has been carried out on different types of FRP composites in the past two decades.