SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

Article citations


Qiao, F. (2015) Fifteen Years of Bt Cotton in China: The Economic Impact and Its Dynamics. World Development, 70, 177-185.

has been cited by the following article:

  • TITLE: Evaluating the Economic and Environmental Impacts of a Global GMO Ban

    AUTHORS: Harry Mahaffey, Farzad Taheripour, Wallace E. Tyner

    KEYWORDS: GMO Crops, Productivity, Computable General Equilibrium, Economic Impacts, Land Use Change

    JOURNAL NAME: Journal of Environmental Protection, Vol.7 No.11, October 27, 2016

    ABSTRACT: The objective of this research is to assess the global economic and greenhouse gas emission impacts of banning GMO crops. This is done by modeling two counterfac-tual scenarios and evaluating them apart and in combination using a well-know Computable General Equilibrium (CGE) model, GTAP-BIO. The first scenario models the impact of a global GMO ban. The second scenario models the impact of increased GMO penetration. The focus is on the price and welfare impacts, and land use change greenhouse gas (GHG) emissions associated with GMO technologies. Much of the prior work on the economic impacts of GMO technology has relied on a combination of partial equilibrium analysis and econometric techniques. However, CGE model-ling is a way of analyzing economy-wide impacts that take into account the linkages in the global economy. Here the goal is to contribute to the literature on the benefits of GMO technology by estimating the impacts on price, supply and welfare. Food price impacts range from an increase of 0.27% to 2.2%, depending on the region. Total welfare losses associated with loss of GMO technology total up to $9.75 bil-lion. The loss of GMO traits as an intensification technology has not only economic impacts, but also environmental ones. The full environmental analysis of GMO is not undertaken here. Rather we model the land use change owing to the loss of GMO traits and calculate the associated increase in GHG emissions. We predict a substan-tial increase in GHG emissions if GMO technology is banned.