SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Shimada, K. and Saga, N. (2016) Enhancement of Sensitivity in Natural Rubber Using Electrolytic Polymerization Aided by a Magnetic Field And MCF for Application in Haptic Sensors. Sensors, 16, 1521.
http://dx.doi.org/10.3390/s16091521

has been cited by the following article:

  • TITLE: Detailed Mechanism and Engineering Applicability of Electrolytic Polymerization Aided by a Magnetic Field in Natural Rubber by Mechanical Approach for Sensing (Part 2): Other and Intrinsic Effects on MCF Rubber Property

    AUTHORS: Kunio Shimada, Norihiko Saga

    KEYWORDS: Sensor, Electrolytic Polymerization, Magnetic Field, Magnetic Cluster, Natural Rubber

    JOURNAL NAME: World Journal of Mechanics, Vol.6 No.10, October 25, 2016

    ABSTRACT: The same ordinary electrolytic polymerization of plastic-type polymer solution is applicable to natural rubber, with its C=C bonds, if a magnetic field and a filler are added. With the application of a magnetic field and the magnetic responsive fluid known as magnetic compound fluid (MCF), we have clarified the enhancement of the electrolytic polymerization of NR-latex and the growth of the thickness of vulcanized MCF rubber that results from the addition of a magnetic field. The present new method of MCF rubber vulcanization is effective for use in haptic sensors, which are used widely in various engineering applications. In the previous report, part 1 of this study, we investigated many experimental conditions under mechanical approach for sensing: magnetic field strength; applied voltage; electrodes gap; mass concentration, and the ingredients of the MCF. In the present sequential report, part 2, we investigate many other effects on electrolytic polymerization by the same mechanical approach for sensing as in part 1: the Mullins effect; the Piezo effect; vibration; kind of electrode; atmospheric gas. In particular, we clarify that the voltage generates spontaneously in the MCF rubber and that the MCF rubber becomes a Piezo element. These effects on the electrolytic polymerization as well as the effects of the experimental conditions will be useful in engineering applications. By taking the above-mentioned parameters and effects into account, MCF rubber that is electrolytically polymerized with the aid of a magnetic field, the use of MCF as a filler, and doping, can be useful in haptic sensor applications. In particular, the effectiveness of the Piezo element can be shown.