TITLE:
The Inverse Gravity Inflationary Theory of Cosmology
AUTHORS:
Edward A. Walker
KEYWORDS:
Isotropic and Homogeneous Universe, Inverse Gravity, Cosmological Inflation, Gravitational Redshift, Robertson-Walker Scale Factor, Klein-Gordon Lagrangian, Dark Energy, Stress-Energy Tensor, Friedman-Walker-Robertson Metric, Photon
JOURNAL NAME:
Journal of Modern Physics,
Vol.7 No.13,
September
28,
2016
ABSTRACT: Cosmological expansion or inflation is mathematically described by the theoretical notion of inverse gravity whose variations are parameterized by a factor that is a function of the distance to which cosmological expansion takes prominence over gravity. This assertion is referred to as the inverse gravity inflationary assertion. Thus, a correction to Newtonian gravitational force is introduced where a parameterized inverse gravity force term is incorporated into the classical Newtonian gravitational force equation where the inverse force term is negligible for distances less than the distance to which cosmological expansion takes prominence over gravity. Conversely, at distances greater than the distance to which cosmological expansion takes prominence over gravity. The inverse gravity term is shown to be dominant generating universal inflation. Gravitational potential energy is thence defined by the integral of the difference (or subtraction) between the conventional Newtonian gravitational force term and the inverse gravity term with respect to radius (r) which allows the formulation, incorporation, and mathematical description to and of gravitational redshift, the Walker-Robertson scale factor, the Robinson-Walker metric, the Klein-Gordon lagrangian, and dark energy and its relationship to the energy of the big bang in terms of the Inverse gravity inflationary assertion. Moreover, the dynamic pressure of the expansion of a cosmological fluid in a homogeneous isotropic universe is mathematically described in terms of the inverse gravity inflationary assertion using the stress-energy tensor for a perfect fluid. Lastly, Einstein’s field equations for the description of an isotropic and homogeneous universe are derived incorporating the mathematics of the inverse gravity inflationary assertion to fully show that the theoretical concept is potentially interwoven into the cosmological structure of the universe.