SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Susova, G.M. and Petrov, A.N. (Eds.) (1997) Markov Model-Based Reliability and Safety Evaluation for Aircraft Maintenance-System Optimization. Annual Reliability and Maintainability Symposium, Philadelphia, 13-16 January 1997, 29-36.
http://dx.doi.org/10.1109/RAMS.1997.571660

has been cited by the following article:

  • TITLE: The Application of Reliability Methods for Aircraft Design Project Management

    AUTHORS: Darli Rodrigues Vieira, Mohamed-Larbi Rebaiaia, Milena Chang Chain

    KEYWORDS: Aircraft Engineering, Project Management, System Safety, Reliability, Maintainability

    JOURNAL NAME: American Journal of Industrial and Business Management, Vol.6 No.9, September 27, 2016

    ABSTRACT: In aircraft project management, reliability and maintainability are fundamental for ensuring system safety, for optimizing the manufacturing process and for improving assembly/disassembly operations when maintenance actions are required. The inclusion of such requirements helps to minimize life cycle costs, augments the residual lifetime of aircraft and consequently increases customer satisfaction. While most papers published in the aircraft engineering literature are rather evasive or do not accurately describe the role of reliability and maintainability (RM) methods in early design phases, this paper elucidates the problem. This paper discusses various concepts such as design for reliability and risk assessment analysis for improving aircraft safety and reliability at the deployment stages. The article also focuses on how reliability prediction issues are addressed using various methods, tools and standards, such as failure modes and effect analysis, fault tree analysis and guidelines such as MIL-STD-217f and ARP4754. Finally, this paper demonstrates that reliability is crucial to consider in all phases of the life cycle of an aircraft.