Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Tong, L., Lou, J. and Mazur, E. (2004) Single-Mode Guiding Properties of Subwavelength Diameter Silica and Silicon Wire Waveguides. Opt. Express, 12, 1025-1035. http://dx.doi.org/10.1364/OPEX.12.001025

has been cited by the following article:

  • TITLE: Simulation of Chirped Pulse Propagation in Silicon Nanowires: Shape and Spectrum Analysis

    AUTHORS: Hassan Pakarzadeh, Zeinab Delirian, Mostafa Taghizadeh

    KEYWORDS: Silicon Nanowire, Nonlinear Schrödinger Equation, Chirp, Pulse Propagation

    JOURNAL NAME: Optics and Photonics Journal, Vol.6 No.8B, August 25, 2016

    ABSTRACT: In this paper, we simulate the propagation of chirped pulses in silicon nanowires by solving the nonlinear Schrodinger equation (NLSE) using the split-step Fourier (SSF) method. The simulations are performed both for the pulse shape (time domain) and for the pulse spectrum (frequency domain), and various linear and nonlinear effects changing the shape and the spectrum of the pulse are analyzed. Owing to the high nonlinear coefficient and a very small effective-mode area, the required length for observing nonlinear effects in nanowires is much shorter than that of conventional optical fibers. The impacts of loss, nonlinear effects, second- and third-order dispersion coefficients and the chirp parameter on pulse propagation along the nanowire are investigated. The results show that the sign and the value of the chirp parameter have important role in pulse propagation so that in the anomalous dispersion regime, the compression occurs for the up- chirped pulses, whereas the broadening takes place for the down-chirped pulses. The opposite situation happens for up- and down-chirped pulses propagating in the normal dispersion regime.