Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Liu, Q.F., Leng, Z.X., Sun, J.K. and Wang, H.M. (2012) The Harmonics Control Method of Inverter in Induction Heating Power Supply. In: Hu, W.S., Ed., Advances in Electrical and Electronics, Volume 155, Springer Berlin, Heidelberg, 461-468.

has been cited by the following article:

  • TITLE: Minimization of Switching Devices and Driver Circuits in Multilevel Inverter

    AUTHORS: S. Jawahar, P. Ramamoorthy

    KEYWORDS: H-Bridge Multilevel Inverter, Single Switch Multilevel Inverter, Body Diode, Switching Angle, THD, Cycloconverter, Half Bridge Multilevel Inverter

    JOURNAL NAME: Circuits and Systems, Vol.7 No.10, August 29, 2016

    ABSTRACT: The various configurations of multilevel inverter involve the use of more numbers of switching devices, energy storage devices and/or unidirectional devices. Each switching unit necessitates the add-on driver circuit for proper functionality. Cascaded H-Bridge Multilevel Inverter requires overlapped switching pulses for the switching devices in positive and negative arms of the bridge which may lead to short circuit during the device failure. This work addresses the problems in different configurations of multilevel inverter by using reduced number of switching and energy storage devices and driver circuits. In the present approach Single Switch is used for each stair case positive output and single H-Bridge for phase reversal. Driver circuits are reduced by using the property of body diode of the MOSFET. Switching pulses are generated by Arduino Development Board. The circuit is simulated using Matlab. More so, through experimental means, it is physically tested and results are analyzed for the 5-step inverter and thereby simulation is fully validated. Consequently, cycloconverter operation of the circuit is simulated using Matlab. Moreover, half bridge configuration of the multilevel inverter is also analyzed for high frequency induction heating applications.