SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Kawamura, M., Ono, K., Stano, P., Kono, K. and Aono, T. (2015) Electronic Magnetization of a Quantum Point Contact Measured by Nuclear Magnetic Resonance. Physical Review Letters, 115, Article ID: 036601.
http://dx.doi.org/10.1103/physrevlett.115.036601

has been cited by the following article:

  • TITLE: The 0.7-Anomaly in Quantum Point Contact; Many-Body or Single-Electron Effect?

    AUTHORS: Tadeusz Figielski

    KEYWORDS: Ballistic Transport, Quantum Point Contact, 0.7 Anomaly, Quantum Superposition and Interference

    JOURNAL NAME: World Journal of Condensed Matter Physics, Vol.6 No.3, August 12, 2016

    ABSTRACT: Apart from usual quantization steps on the ballistic conductance of quasi-one-dimensional conductor, an additional plateau-like feature appears at a fraction of about 0.7 below the first conductance step in GaAs-based quantum point contacts (QPCs). Despite a tremendous amount of research on this anomalous feature, its origin remains still unclear. Here, a unique model of this anomaly is proposed relying on fundamental principles of quantum mechanics. It is noticed that just after opening a quasi-1D conducting channel in the QPC a single electron travels the channel at a time, and such electron can be—in principle—observed. The act of observation destroys superposition of spin states, in which the electron otherwise exists, and this suppresses their quantum interference. It is shown that then the QPC-conductance is reduced by a factor of 0.74. “Visibility” of electron is enhanced if the electron spends some time in the channel due to resonant transmission. Electron’s resonance can also explain an unusual temperature behavior of the anomaly as well as its recently discovered feature: oscillatory modulation as a function of the channel length and electrostatic potential. A recipe for experimental verification of the model is given.