SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Stauffer, C. and Grimson, W.E.L. (2000) Learning Patterns of Activity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 747-757.

has been cited by the following article:

  • TITLE: Hardware Design of Moving Object Detection on Reconfigurable System

    AUTHORS: Hung-Yu Chen, Yuan-Kai Wang

    KEYWORDS: Background Substraction, Moving Object Detection, Field Programmable Gate Array (FPGA), Hardware Acceleration

    JOURNAL NAME: Journal of Computer and Communications, Vol.4 No.10, August 10, 2016

    ABSTRACT: Moving object detection including background subtraction and morphological processing is a critical research topic for video surveillance because of its high computational loading and power consumption. This paper proposes a hardware design to accelerate the computation of background subtraction with low power consumption. A real-time background subtraction method is designed with a frame-buffer scheme and function partition to improve throughput, and implemented using Verilog HDL on FPGA. The design parallelizes the computations of background update and subtraction with a seven-stage pipeline. A stripe-based morphological processing and accounting for the completion of detected objects is devised. Simulation results for videos of VGA resolutions on a low-end FPGA device show 368 fps throughput for only the real-time background subtraction module, and 51 fps for the whole system, including off-chip memory access. Real-time efficiency with low power consumption and low resource utilization is thus demonstrated.