SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Brown, G.D. (2010) The Biosynthesis of Artemisinin (Qinghaosu) and the Phytochemistry of Artemisia annua L. (Qinghao). Molecule, 15, 7603-7698.

has been cited by the following article:

  • TITLE: Enhancement of Artemisinin in Artemisia annua L. through Induced Mutation

    AUTHORS: Mutai Raymond, Kinyua Miriam, Kiplagat Oliver, Mutai Edwin, Kimno Stephen

    KEYWORDS: Artemisinin, Mutation, Varieties, Agronomical Traits

    JOURNAL NAME: Open Access Library Journal, Vol.2 No.12, December 30, 2015

    ABSTRACT: Artemisia annua is the source of artemisinin, an antimalarial drug which is effective against multidrug-resistant strains of plasmodium, the malarial parasite. Malaria has serious effects on morbidity and mortality thus negatively impacting on agricultural production and food security. Although artemisinin has been found to be a useful medicine; its production is very low in comparison with what is actually needed to treat the worldwide threat of malaria. On the other hand, the lower content (0.01% - 0.8%, dry weight) of artemisinin found in leaves and flowers of A. annua has seriously limited its commercialization. Currently there are only two varieties of A. annua present in Kenya; hence there is a need to increase its diversity. The objective of the current study was to determine the effect of mutation on agronomical traits and artemisinin production by parents and mutant (M2) A. annua plants in Kenya Agricultural and Livestock Research Organisation (KALRO) Njoro and the University of Eldoret (UoE). Seeds of two varieties of Artemesia annua varartemis and varanamed were sent to Vienna Austria for irradiation at the International Atomic Energy Agency (IAEA) at a dosage of 150 gray. The M1 seeds were multiplied at the University of Eldoret farm. The harvested seeds were planted in replicate at the University of Eldoret and Njoro (KALRO). The results showed that mutation had significant effect on agronomical traits (P-value A. annua crops was negatively correlated with leaf traits, shoot and stem characteristics. Leaf traits had positive correlations with shoot and stem characteristics. It is recommended that superior lines be advanced in generations for further stability and evaluation of its efficacy in treatment of malaria.