SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

Article citations

More>>

Murase, K., Hiratsuka, S., Song R. and Takeuchi, Y. (2014) Development of a System for Magnetic Particle Imaging Using Neodymium Magnets and Gradiometer. Japanese Journal of Applied Physics, 53, Article ID: 067001.
http://dx.doi.org/10.7567/JJAP.53.067001

has been cited by the following article:

  • TITLE: Usefulness of Magnetic Particle Imaging for Monitoring the Effect of Magnetic Targeting

    AUTHORS: Tomomi Kuboyabu, Akiko Ohki, Natsuo Banura, Kenya Murase

    KEYWORDS: Magnetic Particle Imaging, Magnetic Targeting, Magnetic Nanoparticles, Tumor-Bearing Mice

    JOURNAL NAME: Open Journal of Medical Imaging, Vol.6 No.2, June 8, 2016

    ABSTRACT: Purpose: Magnetic targeting refers to the attachment of therapeutic agents to magnetizable particles such as magnetic nanoparticles (MNPs) and then applying magnetic fields to concentrate them to the targeted region such as solid tumors. The purpose of this study was to investigate the usefulness of magnetic particle imaging (MPI) for monitoring the effect of magnetic targeting using tumor-bearing mice. Materials and Methods: Colon-26 cells (1 × 106 cells) were implanted into the backs of eight-week-old male BALB/c mice. When the tumor volume reached approximately 100 mm3, the mice were divided into treated (n = 8) and untreated groups (n = 8). The tumors in the treated group were directly injected with MNPs (Resovist?, 250 mM) and a neodymium magnet was attached to the tumor surface, whereas the magnet was not attached to the tumor in the untreated group. The mice were imaged using our MPI scanner and the average and maximum MPI values were obtained by drawing a region of interest (ROI) on the tumor, with the threshold value for extracting the contour of the tumor being taken as 40% of the maximum MPI value in the ROI. The relative tumor volume growth (RTVG) was calculated from (V ? V0)/V0, where V0 and V represented the tumor volume immediately before and after the injection of MNPs, respectively. Results: The average and maximum MPI values in the treated group were significantly higher than those in the untreated group 3 days after the injection of MNPs, suggesting the effectiveness of magnetic targeting. There were no significant differences in RTVG between the two groups. Conclusion: Our preliminary results suggest that MPI is useful for monitoring the effect of magnetic targeting.