SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Tako, M., Teruya, T., Tamaki, Y. and Konishi, T. (2009) Molecular Origin for Rheological Characteristics of Native Gellan Gum. Colloid and Polymer Science, 287, 1445-1454.

has been cited by the following article:

  • TITLE: Structure-Function Relationship of a Gellan Family of Polysaccharide, S-198 Gum, Produced by Alcaligenes ATCC31853

    AUTHORS: Masakuni Tako, Seiko kitajima, Takuya Yogi, Keiko Uechi, Masayuki Onaga, Yukihiro Tamaki, Shuntoku Uechi

    KEYWORDS: S-198 Gum, Alcaligenes ATCC31853, Thermal Stability, Intramolecular Associations, Gellan Family of Polysaccharide

    JOURNAL NAME: Advances in Biological Chemistry, Vol.6 No.3, May 26, 2016

    ABSTRACT: The structure-function relationship of a gellan family of polysaccharides, S-198 gum produced by Alcaligenes ATCC31853 was investigated in terms of rheological aspects. The flow curves of S-198 gum showed plastic behavior above 0.3%. Gelation did not occur in S-198 gum solution at low temperature (0℃), even at 0.8%. Both the viscosity and the elastic modulus remained constant with increasing temperature up to 80?C. The elastic modulus decreased a little with the addition of CaCl2 (6.8 mM), but then once again remained constant up to 80℃. The highest elastic modulus was observed for deacylated gellan gum with the addition of CaCl2 and increased slightly with increasing temperature up to 80℃, which was considered to be a transition temperature, after which it decreased rapidly. The elastic modulus of S-198 gum in the presence of urea (4.0 M) was lower than that in aqueous solution at low temperature (0℃), but remained constant with increasing temperature up to 80℃. The intramolecular associations, (hydrogen bonding and van der Waals forces of attraction), of S-198 gum molecules in aqueous solutions were proposed. The gellan family of polysaccharides, S-198, S-88, S-657, rhamsan, welan and gellan gum, provided a good opportunity to investigate the structure-function relationship for polysaccharides.