SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Nishimura, S., Watanabe, T., Mizoshita, K., Tatsuda, K., Fujita, T., Watanabe, N., Sugimoto, Y. and Takasuga, A. (2012) Genome-Wide Association Study Identified Three Major QTL for Carcass Weight Including the PLAG1-CHCHD7QTL for Stature in Japanese Black Cattle. BMC Genetics, 13, 40.

has been cited by the following article:

  • TITLE: Estimated Genetic Variance Explained by Single Nucleotide Polymorphisms of Different Minor Allele Frequencies for Carcass Traits in Japanese Black Cattle

    AUTHORS: Shinichiro Ogawa, Hirokazu Matsuda, Yukio Taniguchi, Toshio Watanabe, Yoshikazu Sugimoto, Hiroaki Iwaisaki

    KEYWORDS: Additive Genetic Variance, Carcass Trait, Japanese Black Cattle, Minor Allele Frequency, Single Nucleotide Polymorphism

    JOURNAL NAME: Journal of Biosciences and Medicines, Vol.4 No.5, May 24, 2016

    ABSTRACT: Japanese Black cattle are a beef breed and well known to excel in carcass quality, but the details of genetic architectures for carcass traits in beef breeds including this breed are still poorly understood. The objective of this study was to estimate the degree of additive genetic variance explained by single nucleotide polymorphism (SNP) marker groups with different levels of minor allele frequency (MAF) for marbling score and carcass weight in Japanese Black cattle. Phenotypic data on 872 fattened steers with the genotype information about 40,000 autosomal SNPs were analyzed using two different statistical models: one considering only SNPs selected based on MAF (model 1) and the other also considering all remaining SNPs as the different term (model 2). All available SNPs were classified into 10 groups based on their MAFs. For both traits, the estimated proportions of additive genetic variance explained by SNPs selected based on their MAFs using model 1 were always higher than the estimated ones using model 2. For carcass weight, relatively high values of the proportion of the additive genetic variance were estimated when using SNPs with MAFs which were in the ranges of 0.20 to 0.25 and 0.25 to 0.30, which may be partly due to the three previously-reported quantitative trait loci candidate regions. The results could have provided some information on the genetic architecture for the carcass traits in Japanese Black cattle, although its validity may be limited, mainly due to the sample size and the use of simpler statistical models in this study.