SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Steinhauser, G., Hujer, W., Sterba, J.H., Seemann, R., Bichler, M. and Symeonidis, N. (2008) On Strontium and Barium Anomalies in the Sediments of Charkadio Cave (Tilos Island, Dodekanese, Greece). Journal of Radioanalytical and Nuclear Chemistry, 276, 167-173.
http://dx.doi.org/10.1007/s10967-007-0427-3

has been cited by the following article:

  • TITLE: Study on the Seismogenic Mechanism of the Earthquake Mw6.9 in 2014 in the Aegean Sea Seismic Cone

    AUTHORS: Lijun Chen

    KEYWORDS: Seismo-Geothermics Theory, Seismic Cone, Turkey, Aegean Sea, Subcrustal Earthquake, Intracrustal Strong Earthquake, Seismogenic Mechanism

    JOURNAL NAME: International Journal of Geosciences, Vol.7 No.5, May 23, 2016

    ABSTRACT: In accordance with the Seismo-Geothermics theory about methods of intracrustal strong earthquake and volcano prediction, we use the ANSS earthquake catalogue from the Northern California earthquake data center and the EMSC earthquake catalogue from the European-Mediterranean Seismological Centre to study the seismic activities of the Turkish Branch Seismic Cone in the Mediterranean Seismic Cone and the following Aegean Sea Seismic Cone, and show reproduction through graphics and animation, the seismogenic process and seismogenic mechanism of the earthquake Mw6.9 on May 24,2014 innorthern Aegean Sea. It was concluded that the energy of strong earthquake of magnitude around7 inAegean Seawas probably from energy transfer and accumulation in deep mantle and incentive lithosphere in the way of wave pattern, and then the strong earthquake occurs suddenly in search of the weak parts of the surface structure. The purpose of this paper is to open a hole in the traditional seismic genesis, and it is beneficial to the further research on the theory and method of earthquake prediction. It is our first attempt to study this case and it needs further examination. In this paper, we divide the Turkish Branch Seismic Cone of the Mediterranean Seismic Cone into 4 tertiary seismic cones, and we show a preliminary seismo-tectonic model of Aegean region. It will be conducive to seismic monitoring and earthquake prediction research inGreece,Turkey,RomaniaandPolandregions. At present, the world’s earthquake prediction has little effect, and it even tends to be not cognitive. Innovative thinking is the only way out.