SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Wilheit, T.T. and Chang, A.T.C. (1980) An Algorithm for Retrieval of Ocean Surface and Atmospheric Parameters from the Observations of the Scanning Multichannel Microwave Radiometer. Radio Science, 15, 525-544.

has been cited by the following article:

  • TITLE: RapidSCAT Sigma-0 and Tb Measurements Validation

    AUTHORS: Patrick Fiati

    KEYWORDS: RapidSCAT, QuikSCAT, Scatterometer, HIRAD, Sigma-0

    JOURNAL NAME: World Journal of Engineering and Technology, Vol.4 No.2, May 10, 2016

    ABSTRACT: Scatterometer Radar Backscatter Calibration since the first SeaSat-A Satellite Scatterometer (Birer et al., 1982), the Amazon tropical rain forest has been recognized as a spatially large extent, homogeneous radar calibration target. During the commissioning of NSCAT (1996) and later QuikSCAT (1999), CFRSL worked with the JPL Scatterometer Cal/Val team to perform normalized radar cross section (Sigma-0) calibrations using the Amazon (see Zec et al., 1999-A and 1999-B) [1]. It is important to continue this activity using RapidSCAT to validate the Sigma-0 measurement provided in the L-1A data product, and moreover the time series of these backscatter observations can be used to establish an improved Ku-band Amazon calibration site for future on-orbit radar calibration [2]. Unfortunately, the Amazon radar backscatter (Sigma-0) exhibits a time of day dependence that is not well characterized, and for the sun-synchronous polar orbiting satellites (SeaSat-A, ADEOS-I and QuikSCAT), the observations occur at specific times of day, during the morning and night passes. But now with the low-earth-orbit of the ISS, there will be an orderly orbit precession, which allows the region to be uniformly sampled over the 24-hour period [3]. Also, since the RapidSCAT employs a conical scanning geometry, we can examine the isotropic nature of Amazon backscatter established by Zec’s (1998-A) analysis of NSCAT and later (1999-B) of QuikSCAT observations [4]. Thus, observations, collected over the RapidSCAT two-year mission will sample the Amazon with high spatial/temporal resolution, as a function of time of day, and over seasons. We propose to analyze these data to develop a high spatial resolution Sigma-0 Amazon map that can be used by future satellite radar missions.