SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Bonhote, P., Gogniat, E., Gratzel, M. and Ashrit, P.V. (1999) Novel Electrochromic Devices Based on Complementary Nanocrystalline TiO2 and WO3 Thin Films. Thin Solid Films, 350, 269-275.
http://dx.doi.org/10.1016/S0040-6090(99)00229-1

has been cited by the following article:

  • TITLE: Synthesis, Characterization, Spectral Properties and Electrochemical of Compounds trans-[Ru(NH)3L(bpa)]2+

    AUTHORS: Wagner Batista dos Santos, Marcio Adriano Sousa Chagas, K.M.D. de Sousa, Daniel Tizo Costa, Luiz Alfredo Pavanin

    KEYWORDS: Ruthenium, Pyridine Ligands, MLCT Bands

    JOURNAL NAME: Open Journal of Inorganic Chemistry, Vol.6 No.2, April 29, 2016

    ABSTRACT: n this work, we present synthesis of the compounds trans-[Ru(NH3)4L(bpa)]2+ where L is pyridine ligands: pyridine (py), isonicotinamide (isn), 4-acetylpyridine (4-acpy) and 4-picoline (4-pic) and 1,2-bis (4-pyridyl) ethane (bpa), their characterization by UV-visible spectroscopy and electrochemical properties. This series shows intense bands in the region between 400 and 515 nm, allocated bands charge transfer (MLCT), the influence of substituents on the pyridine ring (4-acpy and isn), and the interaction between the ligand and the metal, causing a second MLCT band, which is lighter and has more energy. The compound is characterized by spectroscopy by Fourier transform infrared spectroscopy (FTIR). The displacement observed in the symmetrical stretching of νs(CCN) group in the complex compared with the νs(CCN) group in the free ligand is indicative of coordination of the pyridine group to the Ruthenium (II) metallic center. The electrochemical data (cyclic voltammetry) show that reversibility criteria are well defined and formal Ef potential, indicating the influence of the pyridine ring substituent.