SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Tietsche, S., Day, J.J., Guemas, V., Hurlin, W.J., Keeley, S.P.E., Matei, D., Msadek, R., Collins, M. and Hawkins, E. (2014) Seasonal to Interannual Arctic Sea Ice Predictability in Current Global Climate Models. Geophysical Research Letters, 41, 1035-1043.

has been cited by the following article:

  • TITLE: Arctic Sea Ice: Decadal Simulations and Future Scenarios Using BESM-OA

    AUTHORS: Fernanda Casagrande, Paulo Nobre, Ronald Buss de Souza, Andre Lanfer Marquez, Etienne Tourigny, Vinicius Capistrano, Raquel Leite Mello

    KEYWORDS: Arctic Sea Ice, Climate Models, Brazilian Earth System Model

    JOURNAL NAME: Atmospheric and Climate Sciences, Vol.6 No.2, April 29, 2016

    ABSTRACT: Important international reports and a significant number of scientific publications have reported on the abrupt decline of Arctic sea ice and its impact on the Global Climate System. In this paper, we evaluated the ability of the newly implemented Brazilian Earth System Model (BESM-OA) to represent Arctic sea ice and sensitivity to CO2 forcing, using decadal simulations (1980-2012) and future scenarios (2006-2100). We validated our results with satellite observations and compared them to Coupled Model Intercomparison Project, Phase 5 (CMIP5) for the same numerical experiment. BESM results for the seasonal cycle are consistent with CMIP5 models and observations. However, almost all models tend to overestimate sea ice extent in March compared to observations. The correct evaluation of minimum record of sea ice, in terms of time, spatial and area remains a limitation in Coupled Global Climate Models. Looking to spatial patterns, we found a systematic model error in September sea ice cover between the Beaufort Sea and East Siberia for most models. Future scenarios show a decrease in sea ice extent in response to an increase in radiative forcing for all models. From the year 2045 onwards, all models show a dramatic shrinking in sea ice and ice free conditions at the end of the melting season. The projected future sea ice loss is explained by the combined effects of the amplified warming in northern hemisphere high latitudes and feedbacks processes.