SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Gauvin, V.D., Tilley, P.L., Smith, J.R.W.K.F. and Baird, J.T. (2006) Electrocardiogram, Hemodynamics, and Core Body Temperatures of the Normal Freely Moving Laboratory Beagle Dog by Remote Radiotelemetry. Journal of Pharmacology and Toxicology, 53, 128-139.
http://dx.doi.org/10.1016/j.vascn.2005.11.004

has been cited by the following article:

  • TITLE: Evaluation of Physiological Responses to Human Approach Manner in Pet Dogs

    AUTHORS: Megumi Fukuzawa, Tsukasa Ema, Osamu Kai

    KEYWORDS: Dog, Heart rate, Human Approach Manner, Eye Temperature

    JOURNAL NAME: Open Journal of Animal Sciences, Vol.6 No.2, April 27, 2016

    ABSTRACT: We used eye-surface temperature and heart rate as simple, noninvasive physiological indices to evaluate dogs’ responses to an approaching person. Thirteen healthy pet dogs (49.62 ± 31.42 months; 19.28 ± 11.46 kg) were recruited as subjects to investigate physiological responses to approach. We set up two types of approach (smiling and expressionless) by familiar or unfamiliar people of either sex, and all tests were recorded by video cameras. Eye temperature was measured with an infrared thermal camera image, and the dog was equipped with a heart-rate monitor during testing. There were temporal changes in heart rate, and response time differed between HR and eye temperature. Although it may be the one which has to control both a background of the dogs or observational environment, and the response time of each parameter needs to be considered, these two parameters should be useful for non-invasive monitoring of physiological states in dogs in various practical animal situations.