SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.

has been cited by the following article:

  • TITLE: Open Question: Could a Causal Discontinuity Explain Fluctuations in the CMBR Radiation Spectrum?

    AUTHORS: Andrew Walcott Beckwith

    KEYWORDS: Scalar-Tensor Gravity, Bicep 2, CMBR, Causal Structure, Causal Discontinuity

    JOURNAL NAME: Journal of High Energy Physics, Gravitation and Cosmology, Vol.2 No.2, April 13, 2016

    ABSTRACT: Could a causal discontinuity lead to an explanation of fluctuations in the CMBR radiation spectrum? Is this argument valid if there is some third choice of set structure (for instance do self-referential sets fall into one category or another)? The answer to this question may lie in (entangled) vortex structure of space time, along the lines of structure similar to that generate in the laboratory by Ruutu. Self-referential sets may be part of the generated vortex structure, and we will endeavor to find if this can be experimentally investigated. If the causal set argument and its violation via this procedure holds, we have the view that what we see a space time “drum” effect with the causal discontinuity forming the head of a “drum” for a region of about 1010 bits of “information” before our present universe up to the instant of the big bang itself for a time region less than t~10-44seconds in duration, with a region of increasing bits of “information” going up to 10120 due to vortex filament condensed matter style forming through a symmetry breaking phase transition. We address the issue of what this has to do with Bicep 2, the question of scalar-tensor gravity versus general relativity, how to avoid the detection of dust generated Gravity wave signals as what ruined the Bicep 2 experiment and some issues information flow and causal structure has for our CMBR data as seen in an overall summary of these issues in Appendix X, of this document. Appendix XI mentions how to differentiate between scalar-tensor gravity, and general relativity whereas Appendix XII, discusses how to avoid the Bicep 2 mistake again. While Appendix VIII gives us a simple data for a graviton power burst which we find instructive. We stress again, the importance of obtaining clean data sets so as to help us in the eventual detection of gravitational waves which we regard as decisively important and which we think by 2025 or so which will be an important test to discriminate in a full experimental sense the choice of general relativity and other gravity theories, for the evolution of cosmology. Finally, Appendix VII brings up a model for production for gravitons, which is extremely simple. Based upon a formula given in a reference, by Weinberg, in 1971, we chose it due to its illustrative convenience and ties in with Bosonic particles.