SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Clasen, A.T., Boyle, S.I., Haskins, K.E., Overby, S.T. and Hart, S.C. (2003) Community-Level Physiological Profiles of Bacteria and Fungi: Plate Type and Incubation Temper-ature Influences on Contrasting Soils. FEMS Microbiology Ecology, 44, 319-328. http://dx.doi.org/10.1016/S0168-6496(03)00068-0

has been cited by the following article:

  • TITLE: Effects of Continuous Plastic Film Mulching on Soil Bacterial Diversity, Organic Matter and Rice Water Use Efficiency

    AUTHORS: Meiyan Wu, Ruochao Hao, Lianghuan Wu

    KEYWORDS: Rice (Oryza sativa L.), Water Use Efficiency, Water-Saving Agriculture, Bacterial Diversity

    JOURNAL NAME: Journal of Geoscience and Environment Protection, Vol.4 No.4, April 11, 2016

    ABSTRACT: Two field experiments were conducted to study the effects of 6-year plastic film mulching on bacterial diversity, organic matter of paddy soil and water use efficiency on different soils with great environmental variabilities in Zhejiang Province, China, under non-flooding condition. The experiment started in 2001 at two sites with one rice crop annually. Three treatments included plastic film mulching with no flooding (PM), no plastic film mulching and no flooding (UM), and traditional flooding management (TF). Soil samples were collected and analyzed for bacterial diversity by DGGE and organic matter content, and water use efficiency (WUE) was calculated. The results showed that PM treatment favored the development of a more total bacterial community compared with TF management, the total number of bands was 33.3, 31.7 at tiller stage and heading stage (p 7924 kg?ha?1 and 7015 kg?ha?1 for PM and 8150 kg?ha?1 and 6990 kg?ha?1 for TF, respectively. Compared to TF, WUE and irrigation water use efficiency were increased significantly by 70.2% - 80.4% and 273.7% - 1300.0% for PM. It is essential to develop the water-saving agriculture.