SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. and Thomson, J.A. (2007) Induced Plu-ripotent Stem Cell Lines Derived from Human Somatic Cells. Science, 318, 1917-1920.
http://dx.doi.org/10.1126/science.1151526

has been cited by the following article:

  • TITLE: MicroRNAs as Modulators of Endothelial Differentiation of Stem Cells

    AUTHORS: Dursun Gündüz, Muhammad Aslam

    KEYWORDS: EPCs, ESCs, iPSC, miRs, Vascular Regeneration

    JOURNAL NAME: Journal of Biomedical Science and Engineering, Vol.9 No.4, March 29, 2016

    ABSTRACT: MicroRNAs (miRs) are a class of small (~22 nucleotides), widely distributed, and highly conserved non-coding RNA molecules and play an important post-transcriptional regulatory role by targeting mRNA. Embryonic and induced pluripotent stem cells (ESCs and iPSC, respectively) hold great promise for vascular regenerative therapies. However, several limitations currently prohibit their therapeutic use. The importance of miRs in controlling the gene expression profile of a particular cell type is emerging and a multitude of miRs have been identified that play key roles in vascular development and regeneration. A combination of pluripotency transcription factors and different miRs not only enhances the pluripotency of stem cells but also has been reported to enhance their endothelial differentiation. This review will summarize the findings that focus different miR clusters in the induction, maintenance, and directed endothelial differentiation of ESCs and iPSCs.