SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat

Article citations


De Schamphelaire, L., Cabezas, A., Marzorati, M., Friedrich, M.W., Boon, N. and Verstraete, W. (2010) Microbial Community Analysis of Anodes from Sediment Microbial Fuel Cells Powered by Rhizodeposits of Living Rice Plants. Applied and Environmental Microbiology, 76, 2002-2008.

has been cited by the following article:

  • TITLE: Sizes of Anode and Cathode Affect Electricity Generation in Rice Paddy-Field Microbial Fuel Cells

    AUTHORS: Nagayoshi Ueoka, Naoko Sese, Mayu Sue, Atsushi Kouzuma, Kazuya Watanabe

    KEYWORDS: Root Exudates, Polarization Analyses, Pyrosequencing, 16S rRNA Gene, Geobacter

    JOURNAL NAME: Journal of Sustainable Bioenergy Systems, Vol.6 No.1, March 17, 2016

    ABSTRACT: Rice paddy-field microbial fuel cells (RPF-MFCs) are devices that exploit rhizosphere bacteria to generate electricity from soil organic matter, including those excreted from roots. Previous studies have examined factors affecting electric outputs from RPF-MFCs and demonstrated that RPFMFC was able to generate electricity up to 80 mW·m-2 (based on the projected area of anode). The present study operated RPF-MFCs with different sizes of anodes and cathodes and examined how electrode sizes affected electricity generation. We show that anodes are the limiting factor for electricity generation immediately after commencing the operation, while cathodes become the limiting factor after anode performances are sufficiently increased. RPF-MFC achieved the maximum power density of 140 mW·m-2 (based on the projected area of anode), when the cathode is sufficiently larger than the anode. Results suggest that the cathode needs to be improved for eliciting the maximum capacity of rhizosphere bacteria for electricity generation in RPF-MFC.