SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Hermanson, M.H. and Hites, R.A. (1990) Polychlorinated Biphenyls in Tree Bark. Environmental Science and Technology, 24, 666-671. http://dx.doi.org/10.1021/es00075a008

has been cited by the following article:

  • TITLE: Polychlorinated Dibenzofurans and Dibenzo-p-Dioxin in Tree Bark from an Industrialized Area: What the 2,3,7,8-Cl Substituted Congeners Tell Us, and What Is Missing

    AUTHORS: Mark H. Hermanson, Glenn W. Johnson

    KEYWORDS: Tree Bark, Polychlorinated Dibenzofurans, Polychlorinated Dibenzo-p-Dioxins, Principal Components Analysis

    JOURNAL NAME: Journal of Environmental Protection, Vol.7 No.3, February 26, 2016

    ABSTRACT: We analyzed polychlorinated dibenzofurans (PCDF) and dibenzo-p-dioxins (PCDD) in 27 tree bark samples from the industrialized area near Sauget, Illinois, USA. The trees were located within 4 km of the W. G. Krummrich (WGK) plant, the oldest and largest chemical plant in Sauget, with 24 of 27 samples collected from residential areas. The percent of total PCDF or PCDD profiles of ten 2,3,7,8- Cl substituted PCDF and seven PCDD congeners is homogeneous: 90% of the variance among the samples is explained by 3 eigenvalues in a principal components analysis. The homogeneity of the data suggests that samples were affected by similar types of sources which may have been influenced by electric power generation, chemical waste incineration, and large-scale thermal production of chlorinated chemicals. Quantitatively, the 2,3,7,8-Cl substituted congener analysis does not account for 90% of the concentration of tetra- and penta-Cl homologues and 80% of hexa-Cl and 50% of hepta-Cl homologues. The World Health Organization stated during establishment of toxic equivalence factors (TEF, 2005 version) that calculation of toxic equivalents (TEQs) is not suitable for abiotic matrices, such as tree bark, which are not involved in human exposures. Our results show that the non-2,3,7,8-Cl substituted congeners have high concentrations and should be included in analysis.