Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.


Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations


Ohtaki, Y., Takahashi, D., Boku, T. and Sato, M. (2004) Parallel Implementation of Strassen’s Matrix Multiplication Algorithm for Heterogeneous Clusters. 18th International Parallel and Distributed Processing Symposium (2004), Santa Fe, 26-30 April 2004, 112.

has been cited by the following article:

  • TITLE: Matrix Operations Design Tool for FPGA and VLSI Systems

    AUTHORS: Semih Aslan, Jafar Saniie

    KEYWORDS: FPGA, VLSI, Matrix Operations, Design Tools, MATLAB

    JOURNAL NAME: Circuits and Systems, Vol.7 No.2, February 17, 2016

    ABSTRACT: Embedded systems used in real-time applications require low power, less area and high computation speed. For digital signal processing, image processing and communication applications, data are often received at a continuously high rate. The type of necessary arithmetic functions and matrix operations may vary greatly among different applications. The RTL-based design and verification of one or more of these functions could be time-consuming. Some High Level Synthesis tools reduce this design and verification time but may not be optimal or suitable for low power applications. The design tool proposed in this paper can improve the design time and reduce the verification process. The design tool offers a fast design and verification platform for important matrix operations. These operations range from simple addition to more complex matrix operations such as LU and QR factorizations. The proposed platform can improve design time by reducing verification cycle. This tool generates Verilog code and its testbench that can be realized in FPGA and VLSI systems. The designed system uses MATLAB-based verification and reporting.