SCIRP Mobile Website
Paper Submission

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Cox, I.J., Kilian, J., Leighton, T. and Shamoon, T. (1997) Secure Spread Spectrum Watermarking for Multimedia. IEEE Transactions on Image Process, 6, 1673-1687.
http://dx.doi.org/10.1109/83.650120

has been cited by the following article:

  • TITLE: Authentication Method Using a Discrete Wavelet Transform for a Digital Moving Image

    AUTHORS: Ren Fujii, Yasunari Yoshitomi, Taro Asada, Masayoshi Tabuse

    KEYWORDS: Authentication, Moving Image, Copyright Protection, Tolerance to Compression, Wavelet Transforms

    JOURNAL NAME: Journal of Information Security, Vol.7 No.1, January 28, 2016

    ABSTRACT: Recently, several digital watermarking techniques have been proposed for hiding data in the frequency domain of moving image files to protect their copyrights. However, in order to detect the water marking sufficiently after heavy compression, it is necessary to insert the watermarking with strong intensity into a moving image, and this results in visible deterioration of the moving image. We previously proposed an authentication method using a discrete wavelet transform for a digital static image file. In contrast to digital watermarking, no additional information is inserted into the original static image in the previously proposed method, and the image is authenticated by features extracted by the wavelet transform and characteristic coding. In the present study, we developed an authentication method for a moving image by using the previously proposed method for astatic image and a newly proposed method for selecting several frames in the moving image. No additional information is inserted into the original moving image by the newly proposed method or into the original static image by the previously proposed method. The experimental results show that the proposed method has a high tolerance of authentication to both compressions and vicious attacks.