SCIRP Mobile Website

Why Us? >>

  • - Open Access
  • - Peer-reviewed
  • - Rapid publication
  • - Lifetime hosting
  • - Free indexing service
  • - Free promotion service
  • - More citations
  • - Search engine friendly

Free SCIRP Newsletters>>

Add your e-mail address to receive free newsletters from SCIRP.

 

Contact Us >>

WhatsApp  +86 18163351462(WhatsApp)
   
Paper Publishing WeChat
Book Publishing WeChat
(or Email:book@scirp.org)

Article citations

More>>

Woessner, W.W. (2000) Streams and Fluvial Plain Ground Water Interactions: Rescaling Hydrogeologic Thought. Ground Water, 38, 423-429. http://dx.doi.org/10.1111/j.1745-6584.2000.tb00228.x

has been cited by the following article:

  • TITLE: Hyporheic Zone Hydrochemistry of the Mine-Polluted River

    AUTHORS: D. Ciszewski

    KEYWORDS: Hyporheic Zone, Groundwaters, Pollution, Water Chemistry, Metal Mining

    JOURNAL NAME: Journal of Geoscience and Environment Protection, Vol.3 No.10, December 18, 2015

    ABSTRACT: Intensity of stream waters mixing with groundwaters and lateral extent of these processes in the hyporheic zone were investigated in a near-bank sandbar and an adjacent floodplain through the comparison of groundwaters and stream water chemistry of the Bia?a Przemsza River in southern Poland. The stream waters were polluted by the discharge of mine waters from “Boles?aw” lead and zinc mine. The investigated waters were several times more mineralized than the natural spring waters of the river valley. The concentration of: potassium, sodium, and the pH, as well as cadmium, lead, and zinc decreased in the hyporheic zone towards the stream bank, whereas conductance, calcium, magnesium, sulphates, as well as silica contents were the highest on the floodplain, diminishing towards the stream. The changes observed in the chemical composition of groundwaters were apparent in mixing stream waters below the depth of 2 m with shallow groundwaters draining the valley slope. Hyporheic mixing also takes place in the 10-meter-wide, marginal zone of the sandbar, whereas in the 5-meter-wide stream-side zone of the sandbar groundwaters represent weakly transformed stream water.